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Following the ideas of operator product expansion, the velocity v, kinetic energy K= $v2, and dissipation

rate €= vy(dv,/dx J-)2 are treated as independent dynamical variables, each obeying its own equation of motion.
The relations Au(AK)? < r, Au(A€)? < r°, and (_A‘usgkrA €AK are derived. If velocity scales as (Av ),
o r(¥3=1then simple power counting gives (AK)ms % r' ™% and (A €) s * 1/ V(AU ) s < r12 =79 Inthe
Kolmogorov turbulence (y=4) the intermittency exponent u=(v/3)—1=1 and (A€)®=0(Re"'*). The scal-
ing relation for the € fluctuations is a consequence of cancellation of ultraviolet divergences in the equation of

motion for the dissipation rate.
PACS number(s): 47.27.—i

The Kolmogorov relation for the third-order structure
function in decaying homogeneous and isotropic turbulence
[1], derived directly from the Navier-Stokes equations, reads

S3=[u(X+r)~u(X)P=—6u(x)u(x)u(x+r)
=—%er+6vy(dS,/dr), (1)

where u(X) is the x component of the velocity field v, r is
the  displacement in the x direction,  and

e=vy(dv,;/dx j)2 =0(1). The correlation  function
S,=[u(x)—u(X+r)]>. The mean dissipation rate € in the
Kolmogorov derivation is defined as dv?/dt= —2é&. In a sta-
tistically ~steady flow driven by the force f,
dv?/dt=0=—2&+2f-v and, in general, the Kolmogorov
relation (1) must be modified. The Navier-Stokes equations
driven by a force f are

(9v,/3t)+v(dv,/dx;) = = (3p/ dx;) + v(I*v;/9x]) + f,

with V - v=0. It follows from this equation [2] that 2)
.6 (r ,— as,
S3=—§er+7fy4AuAfdy+6v-—, 3)
r' Jo ar

where Af=f(X+r)—f(X). It is clear that if the energy
source acts at the largest scales only, so that the Fourier
transform f(k)=0 for k>ky,—0, then the relations (3) and
(1) are identical for small enough values of the displacement
r. Applying dimensional considerations to the expression (1)
or (3) leads to the Kolmogorov law: (Au)ms=O0(€'3r!3).
This relation defines the dimensionality of the velocity op-
erator: the root-mean-square velocity v, averaged over a ball
of a radius r scales as v, « r'/>. It is convenient to introduce
the effective viscosity v(r) defined from the equation for the
velocity field v=, averaged over small-scale (/<<r) fluctua-
tions: v<-Vv<=~p(r)V?v<. Power counting gives
v(r)~&/3r*3 in accord with Kolmogorov theory. The effec-
tive viscosity v(r) takes into account the effects of the ve-
locity fluctuations at scales /<r. Dimensional consider-
ations, applied to relation (3), are a very crude
approximation. In general, if (Au)gs < r(Y»71 then
v(r) = r”, where the exponent v is to be determined from
the theory. The Kolmogorov spectrum, approximately sup-
ported by experimental data, corresponds to y=4. So, in
what follows this value of parameter y will be used for
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evaluation of the exponents following the general relations
derived below. The relation (1) or (3) gives an important
constraint on the structure of turbulence theory. Fourier
transform of S;(k) « &' (k)=0 for the wave number k in the
inertial range. This means that the largest scales in the flow
play the most important part in dynamics of turbulence. To
make this point even stronger, let us consider a flow driven
by a white-in-time random force having nonzero Fourier
component f(k) at k=kq. In this case the relation (3) gives
S3=—(4€/5kqr*)(*/3q>)(sin gr/q) evaluated at g=k.
Here é=(f - v). This exact relation tells us that the integral
scale k, cannot disappear from the problem as a result of
Galileo-like transformations. The effects of the large-scale
dynamics on the scaling properties of both kinetic energy
and dissipation rate will be investigated below.

It is also interesting to investigate the properties of fluc-
tuations of the local values of kinetic energy K= %v,-z(x) and
dissipation rate €= vy(dv,/ l?xj)z. Power counting based on
u=0(r'?) gives for the dimensionality of kinetic energy
and dissipation rate: K>=0(r*?) and €2=0(r"*?) corre-
sponding to the spectra E (k) < k=73 and E, « k°'>. These
relations strongly contradict all available experimental data.
In this work, following the ideas of operator product expan-
sion, we consider v, K, and € as independent dynamical vari-
ables and derive scaling properties of fluctuations of kinetic
energy (K) and dissipation rate (€). The equation of motion
for kinetic energy is

(0K/dt)+v (8K/dx ;)= — €= (dv p/ox;) + vy( 9*K/ 9x])
+Uifi' (4)

This is essentially an equation for a passive scalar (K)
with various sources added to the right side. Repeating
the procedure for the isotropic and homogeneous flow, de-
scribed in Ref. [2] and Monin and Yaglom [3], gives

Au(AK)*=4u(x)K(x)K(x+r)~—3 Ngr+Fg, where Fg

=0(AeAKr) and Ng=v,(9K/dx;)*+4€e(x)K(x)=0(1).
The O(AuApAK) terms, coming from pressure contribu-
tions to (4), are small in the inertial range limit r— 0. It will
be shown below that Fx=0(r>'®) is also small in the inertial
range when displacement r is small enough. This leads to
the root mean square of kinetic energy fluctuations:
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(AK)Z “72-(7/3)~(NK/51/3)7'1/3 and EKmk(7/3)—3Nk—5/3
for y=4. Again, application of the dimensional reasoning
leading to this result is extremely dangerous. Here it is used
only to illustrate how the arguments based on the weak cou-
pling, when applied to relevant equations of motion, can lead
to the nontrivial scaling. The correlation of kinetic energy
fluctuations can also be derived from the following consid-
erations: the Fourier transform of (AK)? involves the inte-
gral [(K(q1)K(4:)K(q3)K(k—q1—q>—q3)). If the main
contribution to this integral comes from the largest scales,
then it is easy to show that

(AK)ZN mes(Au)Z% V2 22/3r2/3(r/L)[2(7" l)/3]—2‘

ms

It is interesting that these two expressions for the kinetic
energy correlation functions coincide only when y=4. In
what follows we set €=V, ,,=L=0(1).

The spectrum of the dissipation rate fluctuations has to be
calculated from the following equation of motion:

(d€/dt)+v,V;e=F A+ v,V Ve, 5)
where
F =2v,(Vu ) (Vifi) = 2vo(Vv)) (Vv ) (Vv))
=202V, V0)2=2v,(V,u)(V,Vp). (6)

Here, the first term represents P, the second Ty, and the
third T,. This equation leads readily to

Au(A€e)’=4u(x)e(x)e(x+r)~—3N o+ ¢, @)
where N =F (x)e(x)=0(1) and ¢.=O(AF Aer). It will
be shown below that N.~&kK/v(L) where
v(L)~&"3L*3, Thus all contributions to N, are O(1)

which justifies the estimate N.=O(Re’). Our goal is to
evaluate ¢, which can be written as

b.=r f dk(1—e*")F (k) e(— k). (8)
Thus the problem is reduced to calculation of

Y=Fs(k)€(—k)=_l’0f dq dQ q(q+k);

XUu(q, Q)0 (k+q o+ Q)F (k). (9)

The procedure leading to calculation of Y in the one-loop
approximation was developed in Ref. [4]. The main steps are
as follows: First we average the expression F, over the
small-scale velocity fluctuations v(k) with wave numbers
A<k<Ay=k,. It is assumed that k<<A. The main result of
this averaging is in ‘““dressing” the bare viscosity: every-
where we have to substitute v, by the renormalized value
v(A)~&3A~%3, Thus the small-scale averaging procedure
leads to the expressions (6)—(9) but with v< instead of v and
v(A) instead of v,. Using this result and the fact that the
Reynolds number based on »(A) and v= is O(1) when A is
in the inertial range, we derive an estimate:

Y~&F (k). (10)

This is clear since the largest contribution to the integral

Iy= V(A)f d’q dQ q(q+k);

Xvn(q,Q)vn(k+q,0+Q)

taken over the interval 0<g<A comes from the interval
k<gq=~A. In this approximation in the long-time limit
w—0, Iy~v(A)[dq ¢q*E(q)~&=0(1), which is indepen-
dent of A. Correction to (10), coming from the fluctuating
contribution to €= e+ J¢, will be discussed below. The de-
tails of evaluation of (F (Kk)) are given in Ref. [4]. It has
been shown that all contributions to (F ), defined by (6), are
ultraviolet divergent, i.e., the integrals depend on the uv cut-
off k,. However, an accurate evaluation of the integrals re-
vealed that all divergent terms in (6) cancel in the one-loop
approximation and the resulting expression is independent of
the ultraviolet cutoff. It is easy to see from (6) that in the
zeroth order the uv divergent corrections to P, and T, in (6)
cancel each other, reflecting the fact that the mean rates of
production and destruction of € are equal in a statistically
steady state [4]. It has also been shown [4] that the divergent
terms in P.T,,T, and the pressure contributions to (6),
appearing in the first order of the iteration procedure, sum up
to zero. The first nonvanishing correction to
T,~v*(A)fq*(k—@)*v (q)v; (k—q)d’q dQ, appears in
the second order of the iteration procedure, which uses the
Navier-Stokes  equations  symbolically  written  as

vS=~fG+3P(K)G[v=(q)v=(k—q)dq. This correction is
equal to

F (k)~ VZ(A)f 7*(k—@)’P(@)P((k—q)G(q)G(k—q)

Xv=(Q)v=(g—Q)v=(p)v=(k—q—p)dq dp dQ,
(11)

where P(k)=0(k), k=(kw), and G(k,0)=[—iw
+v(A)k?]~1. Relation (11) represents the operator F, in
terms of v=. To evaluate expressions (9), (10), and (8) we
have to calculate F,.. The estimate can be derived readily:
iterating (11) using the zeroth-order solution:

vilk,w)vj(k', 0" )xek>GG* S(k+k')S(w+w’)

gives
€K (k)
Fe(k)ﬂ-‘m s (12)
where
1 271/2
K(k)%z (J’ d’q quvf(q,Qq)vf(k—q,w—Qq)) J .

Substituting (10) and (12) into (8) gives for A=~r~! and

w—0:

Au(Ae)?=4u(x)e(x)e(x+r)

~= %Ner-‘_ ¢€
 E(AK) g

=r ) =0(&*V, ). (13)
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It is interesting that the scaling of the right side of (13) is
independent of the value of . This result can be obtained
from (11) on the basis of dimensional considerations: the
one-loop iteration introduces a factor é=0O(1) and [G*dQ
gives v>(A) in the denominator. The remaining O(v?) con-
tributions give AK in relation (13). Thus it follows from (7)
and (13) that

(A€)?c1/(Au) e r! "= s p= 13 (14)

This expression defines the so-called intermittency expo-
nents w. The corresponding spectrum E, is E (k)
o k(¥3)~2 o« k=23 For the mean value of the dissipation rate
fluctuations we have (A €)? = k) 3o Re'/4.

The approach developed in this work can be used for
derivation of the scaling properties of various composite op-
erators. For example, the energy equation (4) leads to

(3/9r)Au(AK)*+ 3N~ — AeAK. (15)

This relation was obtained above taking into account that in
the case of the large-scale white-in-time random force
(fiviK(x+r))=€éK(x+r) and neglecting the pressure con-
tributions. The left side of (15) is O((d/dr)[V*(Au)?
+ (Au)®]) + 3Nk, where V2 = O((eL)?*?) = O(1). Using
(1) we come to the conclusion that if the r-independent con-
tributions to the left side of (15), corresponding to the con-
stant in the wave-number space flux of K, cancel each other,
the remaining terms give

J
AeAK~— (Au)’oc(r/L)P, (16)

with 8= if the Kolmogorov prediction for the fifth-order
structure function is used. The corresponding co-spectrum
E xxk™ “'3, Using (16) we can show that the contribution to
(13), coming from the e fluctuations, neglected in (10),
which is O(ré AeAK/v(r)~r'3), is small when r—0. The
relation (16) was verified in numerical experiments on the
random force-driven three-dimensional turbulence in Ref.
[5]. The theoretical understanding of (16) was developed
jointly with the authors of Ref. [5].

All operators v, K, and €, considered in this work are
governed by the equations of motion which do not change
under Galileo transformations and K' =K+ 3U?+v-U. It is

clear that the scaling of (AK')? with r is the same as that of
(AK)?>~r?3. Indeed, we can write (AK')’=(AK)?
+1U%(Au)? =« r¥3. The Kolmogorov relation follows di-
rectly from the equation for K': Au'(AK')?
=—3Ngr+Fg., where u'=u+U. Since Au’'=Au we

have (AK')? = r?/3 < (AK)?. As was shown above, the scal-
ing exponent of the right side of relation (13) is invariant
under Galileo transformation. However, the proportionality
coefficient is transformed as a’=a+O(U2), i.e., strictly
speaking, the relation (13) violates Galileo invariance. This
can be an artifact of the low-order diagrammatic approxima-
tion used in the derivation of (13) which, in principle, can
yield incorrect scaling exponents. So, it is gratifying to know
that in the calculation presented here, this is not the case.
Let us explore the possibility that Galileo invariance is
broken by powerful large-scale structures, always present in

real-life turbulent flows. It is known from experimental data
that the large-scale velocity field is described by close-to-
Gaussian statistics. To illustrate the physical meaning of the
results derived in this work let us write the energy equation:

(0K/dt)+v(9K/ox;)+V(9K/ox)=—€,  (17)

where the forcing, pressure, and viscous terms are omitted
for simplicity. The large-scale Gaussian velocity field V is
assumed constant in each realization. The nonlinear contri-
bution to (17) can be treated perturbatively. It is easy to see
that in the zeroth order:

K(k,t)=1<(k,0)—f ek, m)e’V ¥ dr.
0

Multiplying this equation by e€(—4,0) and averaging inde-
pendently over the Gaussian field V and the small-scale €
fluctuations we obtain in the long-time limit ¢— o:

e(—k,O)K(k,O)%f e(k,7)e(—k,0)exp(—+ V).
0

This integral is evaluated easily when kV —o:

SR S — 1
€( —k,O)K(k,O)NkV e(k,1/kV)e(—k,0)

rms

e(k,0)e(—k,0). (18)

kY s

Setting 7=(kV,,,s)_'=0 in the second equality in (18) means
that the dynamics of the dissipation rate is characterized by
the longer time scale or in other words €, though advected by
the large scales, is dominated by the local interactions. This
statement will be justified below. Thus the scaling exponent
w of the dissipation rate fluctuations correlation function is
given by —u=pB—1, where the exponent S is defined by
relation (16). This result holds if the neglected nonlinear con-
tribution to the energy equation can be represented in the
eddy-viscosity approximation wv(k,t)k*K(k,t), provided
kV > v(k,t)k?. An attempt to explain experimentally ob-
served large-scale Gaussian statistics of the velocity fluctua-
tions as a result of the symmetry breaking by the large-scale
coherent structures was made in Ref. [6].

The relation (18) can be directly obtained from the so-
called K — € model, which is extremely successful in describ-
ing large-scale properties of complex turbulent flows. In this
model the effective viscosity v~(K<)?/e~ where the opera-
tors (K)ss=K= and (€)ss=€" with symbol ( )sg denoting
small-scale averaging [4]. The model, which is the result of
cancellation of the ultraviolet divergences [4], is

(9K/ot)+v (9K/9x))=— €, (19)
(9€/dt)+v,Ve~—C,(€*/K) , (20)
where, to simplify notation, we set K=K<, €~ =€ and ne-

glected the diffusion terms in both equations. The constant
factor C,~1.7 (see Ref. [4]). These equations give readily

(8/3r) AuAKAe~(A€e)? (21)
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leading to the relation (18), provided the left side of (21) is
dominated by the large-scale advection with velocity V.
The relation (21) is based on the assumption that
(€%)*~(A€)? if €= stands for the dissipation rate field av-
eraged over the scales /<r. It is important to notice the
difference between (13) and (21). The expression (13), writ-
ten in terms of Fourier transforms, involves the dissipation
rate spectrum E, < k~ %3 and, as a consequence, the integral
is infrared convergent, i.e., the resulting expression does not
involve both infrared and ultraviolet cutoffs. In this case
(Au) s = r'7? is to be used for estimation of the dissipation
rate scaling. On the other hand, the relation (21) involves the
co-spectrum E g contributing to the strong infrared diver-
gence of the corresponding integral, which leads to the
choice (Au)ms=Vims=0(1), yielding the same result for
the dissipation rate spectrum. It is interesting that the relation
(21) is invariant under random Galileo transformation.

The main result of this work is the derivation of the ex-
perimentally observable correlation functions:

Au(AK)*~Ngr, (22)
Jd
— AuAeAK~(A€)?, (23)
ar
Au(Ae)’*~eV, ", (24)
(Au)’~rAeAK, (25)
r(Ae)’~V, AeAK. (26)

Since the effective Reynolds number in the inertial range is
O(1) these relations lead approximately to (AK),,, < 7'/
and (A €),ms * (Au)1'? « r =16 One interesting consequence
of relation (13) was noticed by Nelkin [7]: if the Kolmog-
orov hypothesis e(x)e(x+r)~e’~(Au)®/r?, where €, is
the value of the dissipation rate € averaged over the sphere of
radius r surrounding the point x, is correct, then (Au)’
o r2. The relation (25) gives also (Au)* « r*'2. Simple power
counting, involved in derivation of these scaling relations,
implies weak coupling and thus is a very dangerous proce-
dure. The derived numerical values of the exponents, corre-
sponding to the mean field theory, are not to be taken too
seriously despite their close agreement with experimental
data.

To conclude: Derivation of the nontrivial spectrum of the
dissipation rate fluctuations directly from the Navier-Stokes
equations based on a finite order of the renormalized pertur-
bation expansion seems to be impossible. However, even

one-loop approximation, applied to the high-order equation
of motion for the local values of the dissipation rate, gives a
strong intermittency with exponent x4 =} in good agreement
with experimental data. This result is a direct consequence of
exact cancellation of the ultraviolet divergences in the e
equation, discovered in Ref. [4] in the context of derivation
of the K— € model for the description of the large-scale fea-
tures of turbulent flows. One consequence of the anomalous
scaling of K and € may play an important part in develop-
ment of turbulence theory: the only dimensionless coupling
constant, based on the Kolmogorov scalin% is local Rey-
nolds number Re=uv,r/v(r)~[er*/v3(r)]"?=0(1). The
nontrivial scaling, derived in this work, leads to appearance
of dimensionless parameters Rex =~ K,r%/vi(r)
~ Re%(r/L)"3>—0 and Re.= €,7*/v>(r)—0 in the infrared
limit r—oo. The role of these small parameters in the high-
order contributions to the renormalized perturbation expan-
sion is under investigation.

The expression (14) leads to the relation between the
shape of the energy spectrum in turbulent flows and the
small-scale intermittency exponent u. Let E(k)
o k17(273) 50 that u,,g « r{”3~1, This relation tells us that
v=3 is a crossover value of parameter y: the small-scale
intermittency exists for y>3 and the intermittency exponent
1=(7y/3)—1 reaches value x= 3 on the Kolmogorov spec-
trum (y=4). It is interesting that at y>3, the kinetic energy
of the flow is dominated by the large-scale dynamics, while
when y<3 the main contribution to turbulent energy comes
from small scales. This result stresses the dominant role of
the large-scale dynamics in the intermittency of the dissipa-
tion rate fluctuations.

The method presented in this work can be directly applied
to the equation for a passive scalar T, advected by turbulent
velocity field. In this case cancellation of uv divergences in
the scalar dissipation rate equation should lead to the follow-
ing  correlation  functions: Au(AK7)’=0(r) and
Au(AN7)*=0(r%) where K;=T? and N;=(VT)2. The
power counting gives then AK; < r!/ and ANy « r~1/5,
These relations are invariant under Galileo transformations.
It is interesting that the reported experimentally observed
intermittency exponent for the fluctuations of the scalar dis-
sipation rate is uy~0.35 which is extremely close to the
prediction of this work: uy~ 3, provided the velocity field is
characterized by the Kolmogorov spectrum.

Most stimulating discussions with R. H. Kraichnan, V.
Borue, M. Nelkin, A. Polyakov, U. Frisch, M. Vergassola, S.
Orszag, K. R. Sreenivasan, E. Jackson, L. Smith, and I.
Starosel’skii are gratefully acknowledged. This work was
supported by DARPA and AFOSR.

[1] A. N. Kolmogorov, Dokl. Akad. Nauk SSSR 32, 19 (1941).

[2] V. Yakhot, Phys. Rev. Lett. 69, 769 (1992).

[3] A. S. Monin and A. M. Yaglom, Statistical Fluid Mechanics
(MIT Press, Cambridge, MA, 1975), Vol. 2.

[4] V. Yakhot and L. M. Smith, J. Sci. Comput. 7, 35 (1992).
[5] V. Borue and S. A. Orszag (unpublished).

[6] V. Yakhot, Phys. Rev. E 49, 2887 (1994).

[7]1 M. Nelkin (private communication).



